metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[diaquabis(µ₄-benzene-1,3-dicarboxylato)(µ₃-benzene-1,3-dicarboxylato)dierbium(III)] monohydrate]

Wen-Dong Song,^a De-Yun Ma^b and Chao-Hua Zhang^{c*}

^aCollege of Science, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, ^bCollege of Chemistry, South China University of Technology, GuangZhou 510640, People's Republic of China, and ^cSchool of Food Science and Technology, Guang Dong Ocean Unversity, Zhan Jiang 524088, People's Republic of China

Correspondence e-mail: songwd60@126.com

Received 12 September 2007; accepted 20 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.019; wR factor = 0.045; data-to-parameter ratio = 14.3.

The title erbium coordination polymer, {[Er₂(C₈H₄O₄)₃- $(H_2O)_2$]· H_2O _n, was obtained by the hydrothermal reaction of ErCl₃ with benzene-1,3-dicarboxylic acid (1,3-BDC) in alkaline aqueous solution. Each of the two crystallographically independent Er^{III} ions is seven-coordinate and has a distorted pentagonal-bipyramidal geometry. One Er centre is coordinated by seven O atoms from six 1,3-BDC ligands and the other Er centre is surrounded by five O atoms from five 1,3-BDC ligands and two water molecules. The bridging ligands, which have two different coordination modes, link the metal centres to form a three-dimensional network with channels parallel to the b axis in which solvent water molecules are located. The crystal structure is stabilized by intra- and intermolecular $O-H \cdots O$ hydrogen-bonding interactions. One benzene ring and the solvent water molecule are independently disordered over two positions each, with 0.595 (2):0.405 (2) occupancy ratios of and 0.661 (1):0.339 (1), respectively.

Related literature

For related literature, see: Bourne *et al.* (2001); Zhang *et al.* (2003). *PLATON* (Spek, 2003) was used for the analysis of voids in the structure.

Experimental

Crystal data

$$\begin{split} & [\mathrm{Er}_2(\mathrm{C_8H_4O_4})_3(\mathrm{H_2O})_2]\cdot\mathrm{H_2O} & V = 2677.94 \ (9) \ \text{\AA}^3 \\ & M_r = 880.90 & Z = 4 \\ & \mathrm{Monoclinic}, \ P2_1/c & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ & a = 10.5553 \ (2) \ \text{\AA} & \mu = 6.30 \ \mathrm{mm}^{-1} \\ & b = 14.9526 \ (3) \ \text{\AA} & T = 293 \ (2) \ \mathrm{K} \\ & c = 17.4798 \ (3) \ \text{\AA} & 0.25 \times 0.19 \times 0.16 \ \mathrm{mm} \\ & \beta = 103.908 \ (1)^\circ \end{split}$$

33045 measured reflections

 $R_{\rm int} = 0.028$

6127 independent reflections

5579 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.248, T<sub>max</sub> = 0.369
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	H atoms treated by a mixture of
$wR(F^2) = 0.045$	independent and constrained
S = 1.06	refinement
6127 reflections	$\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$
429 parameters	$\Delta \rho_{\rm min} = -0.75 \ {\rm e} \ {\rm \AA}^{-3}$
68 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1WB - H2WB \cdots O12^{i}$	0.817 (10)	2.54 (5)	3.019 (7)	118 (5)
$O1WB - H1WB \cdots O10^{ii}$	0.813 (10)	2.071 (19)	2.709 (6)	135 (3)
$O3W - H6W \cdot \cdot \cdot O1WB$	0.822 (10)	2.00 (3)	2.742 (7)	150 (5)
$O2W - H3W \cdot \cdot \cdot O1WB$	0.817 (10)	2.13 (3)	2.837 (8)	144 (4)
O2W−H4W···O3 ⁱⁱⁱ	0.819 (10)	2.002 (11)	2.820 (3)	176 (5)
$O1WA - H2WA \cdots O12^{i}$	0.822 (10)	2.54 (5)	3.087 (14)	125 (5)
$O1WA - H1WA \cdots O10^{ii}$	0.825 (10)	2.071 (19)	2.862 (14)	160 (4)
O3W−H6W···O1WA	0.822 (10)	1.93 (3)	2.702 (14)	157 (5)
$O2W - H3W \cdot \cdot \cdot O1WA$	0.817 (10)	2.80 (4)	3.429 (16)	135 (4)
$O3W-H5W\cdots O1$	0.819 (10)	1.881 (14)	2.692 (3)	170 (5)
Summature and and (i) as a	1 - 1.(;;)			1

Symmetry codes: (i) $-x, y = \frac{1}{2}, -z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + 1, y = \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge South China Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2067).

References

- Bourne, S. A., Lu, J., Mondal, A., Moulton, B. & Zaworotko, M. J. (2001). *Angew. Chem. Int. Ed.* **40**, 2111–2113.
- Bruker (2004). APEX2, SMART and SHELXTL. Bruker AXS Inc, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhang, L.-P., Wan, Y.-H. & Jin, L.-P. (2003). Polyhedron, 22, 981-987.

Acta Cryst. (2007). E63, m2826-m2827 [doi:10.1107/S1600536807051975]

$\label{eq:poly} Poly[[diaquabis(μ_4-benzene-1,3$-dicarboxylato)($\mu_3$-benzene-1,3$-dicarboxylato)dierbium(III)] monohydrate]$

W.-D. Song, D.-Y. Ma and C.-H. Zhang

Comment

As a building block, benzene-1,3-dicarboxylic acid (1,3-BDC) is an excellent candidate for the construction of supramolecular complexes (Bourne *et al.*, 2001; Zhang *et al.*, 2003). Recently, we obtained the title coordination polymer by the reaction of ErCl₃ with benzene-1,3-dicarboxylic acid in alkaline aqueous solution, and its crystal structure is reported here.

Each of the two crystallographically independent Er^{III} centres is seven-coordinate and has a distorted pentagonal bipyramidal geometry: one Er centre is coordinated by seven oxygen atoms from six 1,3-BDC ligands, and the other Er centre is surrounded by five oxygen atoms from five 1,3-BDC ligands and two water molecules (Fig. 1). The adjacent Er...Er separations are 4.448 (4) and 4.965 (5) Å, respectively. The dianionic ligands cross-link the metal ions to form a three-dimensional network with channels running along the *c* axis hosting an uncoordinated disordered water molecule (Fig. 2). The title compound exhibits two types of large voids that seem to be partially filled by diffuse solvent (no corrections for this were applied to the dataset). The larger of the voids has a volume of of 142.3 Å³ (5.3% of the unit cell volume) and is located in close proximity to a disordered phenyl ring of one of the 1,3-BDC ligands. The large void thus gives the phenyl ring additional degrees of freedom which can be seen as a likely cause of the disorder of the phenyl ring. The second type of void in the structure (75.6 Å³, 2.8% of the unit cell volume) is located close to the disordered water solvate molecule (see refinement section for details). These water molecules are hydrogen bonded to coordinated water molecules and carboxylate units that all form a hydrogen bonded chain parallel to the *b* axis (Table 1).

Experimental

A mixture of ErCl_3 (0.5 mmol, 0.186 g), benzenedicarboxylic acid (0.75 mmol, 0.125 g), NaOH (1.5 mmol; 0.06 g) and H₂O (10 ml) was placed in a 20 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h⁻¹. The crystals obtained were washed with water and dryed in air.

Refinement

Two types of large apparently unfilled voids are found in the unit cell of the title compound. Their volumes were calculated using *PLATON* (Spek, 2003) as 142.3 and 75.6 Å³ (5.3% and 2.8% of the unit cell volume), respectively. The larger void is located close to one of phenyl rings of the 1,3-BDC ligands, giving it enough room to rotate around the C—C bond connecting the ring which may result in the disorder; the smaller unfilled void is located close to a disordered water solvate molecule. Based on these observations, one of the phenyl rings and the lattice water molecule were split into two positions. The occupancy ratios refined to 0.595 (2) to 0.405 (2) and 0.661 (1) to 0.339 (1), respectively. Due to the significant overlap of the disordered atoms the following restraints were applied: The phenyl ring C11 C12 C13 C14 C15 C16 and its disordered counterpart were each restrained to be flat and its equivalent bond distances were restrained to be the same within a standard

deviation of 0.01 Å. All water H atoms were tentatively located in difference density Fourier maps and were refined with O—H distance restraints of 0.82 (1) Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. The hydrogen atoms of the disordered water molecule were set to have each the same coordinates for both disordered H₂O molecules. Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The molecular packing showing the intra/intermolecular hydrogen bonding interactions as broken lines. The minor moiety of the disordered phenyl rings and water molecules were omitted for clarity.

$Poly[[diaquabis(\mu_4-benzene-1,3-dicarboxylato)(\mu_3-benzene-1,3-dicarboxylato)dierbium(III)] monohydrate]$

$F_{000} = 1672$
$D_{\rm x} = 2.185 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 6000 reflections
$\theta = 1.7 - 28.0^{\circ}$
$\mu = 6.30 \text{ mm}^{-1}$
T = 293 (2) K
Block, red
$0.25\times0.19\times0.16~mm$

Data collection

Bruker APEXII area-detector	6127 independent reflections
diffractometer	6127 Independent reflections

Radiation source: fine-focus sealed tube 5579 re	flections with $I > 2\sigma(I)$
Monochromator: graphite $R_{\rm int} = 0.$.028
$T = 293(2) \text{ K} \qquad $	27.5°
ϕ and ω scans $\theta_{min} = 1$	8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -13$	→13
$T_{\min} = 0.248, \ T_{\max} = 0.369$ $k = -18$	→19
33045 measured reflections $l = -22$ -	→22

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0206P)^2 + 2.4501P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.002$
6127 reflections	$\Delta \rho_{max} = 0.74 \text{ e } \text{\AA}^{-3}$
429 parameters	$\Delta \rho_{min} = -0.75 \text{ e } \text{\AA}^{-3}$
68 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.4248 (3)	0.86190 (19)	0.39035 (18)	0.0260 (6)	
C2	0.5658 (3)	0.8382 (2)	0.41007 (18)	0.0265 (6)	
C3	0.6091 (3)	0.7605 (2)	0.3798 (2)	0.0345 (7)	
Н3	0.5493	0.7234	0.3468	0.041*	
C4	0.7393 (3)	0.7386 (2)	0.3985 (2)	0.0414 (9)	
H4	0.7672	0.6862	0.3790	0.050*	
C5	0.8288 (3)	0.7944 (2)	0.44620 (19)	0.0329 (7)	
Н5	0.9170	0.7798	0.4581	0.039*	

C6	0.7880(3)	0 87251 (19)	0 47671 (17)	0 0231 (6)	
C7	0.6560 (3)	0.8938 (2)	0.45889 (17)	0.0232 (6)	
H7	0.6279	0.9454	0.4796	0.028*	
C8	0.8849 (3)	0.9284 (2)	0 53231 (16)	0.0228 (6)	
C9	0.1432 (3)	0.7014 (2)	0.37867 (17)	0.0261 (6)	
C10	0.1544 (4)	0.6373 (2)	0.44503 (19)	0.0356 (8)	
C11	0.1555 (11)	0.5435 (4)	0.4307 (4)	0.043 (2)	0.595 (17)
H11	0.1552	0.5225	0.3806	0.051*	0.595 (17)
C12	0.1570 (14)	0.4837 (4)	0.4916 (4)	0.053 (3)	0.595 (17)
H12	0.1670	0.4228	0.4837	0.064*	0.595 (17)
C13	0.1438 (13)	0.5141 (4)	0.5636 (4)	0.043 (2)	0.595 (17)
H13	0.1346	0.4734	0.6022	0.052*	0.595 (17)
C14	0.1441 (4)	0.6070 (2)	0.57907 (19)	0.0406 (9)	
C15	0.1481 (17)	0.6677 (5)	0.5196 (4)	0.020 (3)	0.595 (17)
H15	0.1466	0.7288	0.5294	0.024*	0.595 (17)
C12'	0.241 (2)	0.4969 (8)	0.5074 (6)	0.057 (4)	0.405 (17)
H12'	0 2761	0 4402	0 5047	0.069*	0 405 (17)
C13'	0.2122 (17)	0 5254 (7)	0.5762 (6)	0.045 (3)	0 405 (17)
H13'	0.2377	0.4908	0.6215	0.054*	0.405(17)
C11'	0.2174 (15)	0 5528 (6)	0.4422(7)	0.046 (3)	0.405(17)
H11'	0.2424	0.5356	0.3969	0.055*	0.405(17)
C15'	0.2121	0.6645 (8)	0.5149(6)	0.023 (5)	0.405(17)
H15'	0.0898	0.7213	0.5185	0.028*	0.105(17) 0.405(17)
C16	0 1198 (3)	0.6381(2)	0.65529 (17)	0.0277 (6)	0.105 (17)
C17	-0.1653(3)	0.0301(2) 0.9341(2)	0.00029(17) 0.26831(18)	0.0266 (6)	
C18	-0.2393(3)	0.9511(2) 0.86014(19)	0.22034 (18)	0.0255 (6)	
C19	-0.3618(3)	0.8754 (2)	0.1715(2)	0.0376 (8)	
H19	-0 3973	0.9327	0.1679	0.045*	
C20	-0.4318(3)	0 8064 (2)	0 1280 (2)	0.0441 (9)	
H20	-0.5135	0.8175	0.0949	0.053*	
C21	-0.3796(3)	0 7207 (2)	0 1339 (2)	0 0343 (7)	
H21	-0.4271	0.6739	0.1057	0.041*	
C22	-0.2561(3)	0.70480 (19)	0.18197 (18)	0.0252 (6)	
C23	-0.1856(3)	0.77463 (19)	0.22438 (17)	0.0238 (6)	
H23	-0.1023	0.7643	0.2556	0.029*	
C24	-0.2007(3)	0.6126 (2)	0.18770 (17)	0.0249 (6)	
Er1	0.123252 (11)	0.638620 (8)	0.184714 (7)	0.01869 (4)	
Er2	0.165788 (12)	0.917258 (8)	0.343349 (7)	0.01900 (4)	
01	0.3531 (2)	0.83950 (16)	0.32336 (13)	0.0330 (5)	
02	0.3765 (2)	0.90475 (15)	0.43797 (13)	0.0344 (5)	
03	0.85407 (19)	1.00772 (14)	0.54583 (11)	0.0250 (4)	
O4	0.9920 (2)	0.89345 (16)	0.56502 (12)	0.0325 (5)	
05	0.1421 (3)	0.67059 (18)	0.31182 (13)	0.0471 (7)	
O6	0.1334 (2)	0.78295 (14)	0.39261 (13)	0.0342 (5)	
O7	0.0848 (2)	0.71862 (14)	0.65904 (13)	0.0323 (5)	
08	0.1330 (3)	0.58356 (15)	0.71069 (13)	0.0393 (6)	
O9	-0.0799 (2)	0.60084 (16)	0.20490 (14)	0.0366 (5)	
O10	-0.2784 (2)	0.54756 (14)	0.17309 (14)	0.0338 (5)	
011	-0.0531 (2)	0.91931 (17)	0.30952 (15)	0.0400 (6)	

012	-0.2207 (2)	1.00858 (15)	0.26555 (15)	0.0430 (6)	
O2W	0.2469 (2)	0.60998 (19)	0.09076 (15)	0.0402 (6)	
H3W	0.3236 (16)	0.595 (3)	0.103 (3)	0.060*	
H4W	0.221 (4)	0.580 (3)	0.0511 (16)	0.060*	
O3W	0.3326 (2)	0.6988 (2)	0.22505 (18)	0.0520 (8)	
H5W	0.347 (5)	0.743 (2)	0.254 (2)	0.078*	
H6W	0.398 (3)	0.668 (3)	0.227 (3)	0.078*	
O1WA	0.5067 (13)	0.5632 (10)	0.2455 (10)	0.0634 (18)	0.339 (12)
H1WA	0.5571 (14)	0.549 (4)	0.2180 (16)	0.095*	0.339 (12)
H2WA	0.459 (5)	0.520 (2)	0.2300 (15)	0.095*	0.339 (12)
O1WB	0.4793 (6)	0.5556 (5)	0.1995 (5)	0.0634 (18)	0.661 (12)
H1WB	0.5571 (14)	0.549 (4)	0.2180 (16)	0.095*	0.661 (12)
H2WB	0.459 (5)	0.520 (2)	0.2300 (15)	0.095*	0.661 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0277 (16)	0.0197 (14)	0.0283 (16)	-0.0009 (12)	0.0022 (13)	-0.0013 (12)
C2	0.0262 (15)	0.0262 (15)	0.0246 (15)	0.0017 (12)	0.0013 (12)	-0.0026 (12)
C3	0.0336 (17)	0.0279 (17)	0.0358 (18)	0.0034 (13)	-0.0039 (14)	-0.0105 (14)
C4	0.041 (2)	0.0354 (19)	0.044 (2)	0.0154 (15)	0.0030 (16)	-0.0146 (16)
C5	0.0262 (16)	0.0369 (18)	0.0332 (17)	0.0119 (14)	0.0026 (13)	-0.0051 (14)
C6	0.0215 (14)	0.0260 (15)	0.0207 (14)	0.0034 (11)	0.0030 (11)	0.0033 (11)
C7	0.0250 (15)	0.0216 (14)	0.0224 (14)	0.0028 (11)	0.0045 (12)	-0.0020 (11)
C8	0.0228 (14)	0.0307 (16)	0.0159 (13)	0.0029 (12)	0.0067 (11)	0.0021 (11)
C9	0.0286 (15)	0.0296 (16)	0.0198 (14)	0.0007 (12)	0.0053 (12)	0.0041 (12)
C10	0.065 (2)	0.0231 (16)	0.0209 (15)	0.0101 (15)	0.0143 (15)	0.0026 (12)
C11	0.083 (6)	0.026 (3)	0.023 (3)	0.003 (3)	0.020 (4)	-0.002 (2)
C12	0.106 (7)	0.019 (3)	0.038 (4)	0.007 (4)	0.025 (4)	-0.002 (3)
C13	0.080 (6)	0.022 (3)	0.032 (4)	0.005 (3)	0.022 (4)	0.005 (2)
C14	0.081 (3)	0.0238 (16)	0.0207 (16)	0.0138 (17)	0.0187 (17)	0.0028 (13)
C15	0.022 (5)	0.014 (4)	0.022 (4)	0.004 (3)	0.002 (3)	-0.001 (3)
C12'	0.097 (9)	0.041 (6)	0.040 (5)	0.024 (6)	0.029 (6)	0.002 (4)
C13'	0.073 (8)	0.034 (5)	0.030 (5)	0.015 (5)	0.018 (5)	0.014 (4)
C11'	0.075 (8)	0.037 (5)	0.030 (5)	0.017 (5)	0.021 (5)	0.002 (4)
C15'	0.026 (9)	0.024 (6)	0.019 (6)	0.001 (4)	0.003 (4)	-0.002 (4)
C16	0.0399 (18)	0.0247 (15)	0.0180 (14)	-0.0029 (13)	0.0059 (13)	-0.0032 (12)
C17	0.0295 (16)	0.0238 (15)	0.0258 (15)	-0.0083 (12)	0.0053 (13)	-0.0003 (12)
C18	0.0254 (15)	0.0211 (14)	0.0289 (16)	-0.0035 (11)	0.0045 (12)	-0.0014 (12)
C19	0.0329 (18)	0.0197 (16)	0.053 (2)	0.0064 (13)	-0.0043 (16)	-0.0024 (14)
C20	0.0330 (19)	0.0287 (18)	0.057 (2)	0.0042 (14)	-0.0153 (16)	-0.0053 (17)
C21	0.0303 (17)	0.0240 (16)	0.0433 (19)	-0.0023 (13)	-0.0014 (14)	-0.0088 (14)
C22	0.0270 (15)	0.0203 (14)	0.0304 (16)	0.0014 (12)	0.0112 (12)	0.0012 (12)
C23	0.0198 (14)	0.0232 (15)	0.0288 (15)	0.0001 (11)	0.0065 (12)	0.0023 (12)
C24	0.0321 (17)	0.0214 (14)	0.0248 (15)	0.0051 (12)	0.0138 (13)	0.0019 (12)
Er1	0.01977 (7)	0.01790 (7)	0.01744 (7)	-0.00041 (4)	0.00257 (5)	0.00048 (5)
Er2	0.02283 (7)	0.01816 (7)	0.01542 (7)	-0.00301 (5)	0.00344 (5)	-0.00120 (5)
01	0.0238 (11)	0.0396 (13)	0.0324 (12)	-0.0005 (9)	0.0003 (9)	-0.0148 (10)

O2	0.0303 (12)	0.0374 (13)	0.0319 (12)	0.0081 (10)	0.0007 (10)	-0.0122 (10)
O3	0.0265 (11)	0.0291 (11)	0.0182 (10)	-0.0003 (9)	0.0029 (8)	-0.0022 (8)
O4	0.0247 (11)	0.0443 (13)	0.0248 (11)	0.0077 (10)	-0.0016 (9)	0.0003 (10)
O5	0.079 (2)	0.0455 (15)	0.0171 (11)	-0.0018 (14)	0.0119 (12)	0.0012 (10)
O6	0.0466 (14)	0.0240 (12)	0.0356 (12)	0.0014 (10)	0.0168 (11)	0.0102 (9)
O7	0.0494 (14)	0.0213 (11)	0.0296 (12)	-0.0020 (10)	0.0162 (10)	-0.0068 (9)
O8	0.0684 (17)	0.0319 (13)	0.0176 (11)	-0.0004 (11)	0.0105 (11)	0.0037 (9)
O9	0.0314 (13)	0.0375 (13)	0.0462 (14)	0.0111 (10)	0.0199 (11)	0.0119 (11)
O10	0.0384 (13)	0.0187 (11)	0.0455 (14)	0.0026 (9)	0.0125 (11)	-0.0041 (10)
O11	0.0293 (13)	0.0465 (15)	0.0396 (14)	-0.0114 (11)	-0.0010 (11)	-0.0036 (11)
O12	0.0498 (15)	0.0200 (12)	0.0528 (16)	-0.0052 (10)	-0.0001 (12)	-0.0092 (11)
O2W	0.0273 (12)	0.0592 (17)	0.0346 (14)	-0.0048 (12)	0.0086 (11)	-0.0237 (12)
O3W	0.0266 (13)	0.0621 (19)	0.0632 (18)	-0.0064 (12)	0.0028 (12)	-0.0415 (15)
O1WA	0.036 (3)	0.066 (3)	0.092 (5)	0.005 (2)	0.024 (4)	0.008 (4)
O1WB	0.036 (3)	0.066 (3)	0.092 (5)	0.005 (2)	0.024 (4)	0.008 (4)

Geometric parameters (Å, °)

C1—O2	1.251 (4)	C18—C19	1.386 (4)
C1—O1	1.277 (4)	C18—C23	1.393 (4)
C1—C2	1.488 (4)	C19—C20	1.386 (5)
C1—Er2	2.784 (3)	С19—Н19	0.9300
C2—C7	1.391 (4)	C20—C21	1.390 (5)
C2—C3	1.398 (4)	С20—Н20	0.9300
C3—C4	1.374 (5)	C21—C22	1.391 (4)
С3—Н3	0.9300	C21—H21	0.9300
C4—C5	1.380 (5)	C22—C23	1.388 (4)
C4—H4	0.9300	C22—C24	1.491 (4)
C5—C6	1.395 (4)	С23—Н23	0.9300
С5—Н5	0.9300	C24—O9	1.250 (4)
C6—C7	1.390 (4)	C24—O10	1.258 (4)
C6—C8	1.487 (4)	Er1—O7 ⁱ	2.199 (2)
С7—Н7	0.9300	Er1—O5	2.234 (2)
C8—O4	1.252 (3)	Er1—O4 ⁱⁱ	2.266 (2)
C8—O3	1.268 (3)	Er1—O12 ⁱⁱⁱ	2.273 (2)
С9—Об	1.253 (4)	Er1—09	2.325 (2)
C9—O5	1.253 (4)	Er1—O3W	2.333 (2)
C9—C10	1.487 (4)	Er1—O2W	2.370 (2)
C10—C15	1.397 (6)	Er2—O11	2.243 (2)
C10—C15'	1.397 (8)	Er2—O6	2.243 (2)
C10—C11	1.424 (6)	Er2—O8 ⁱ	2.261 (2)
C10—C11'	1.434 (8)	Er2—O3 ^{iv}	2.2913 (19)
C11—C12	1.388 (7)	Er2—O10 ^v	2.336 (2)
C11—H11	0.9300	Er2—O1	2.390 (2)
C12—C13	1.376 (7)	Er2—O2	2.439 (2)
C12—H12	0.9300	O3—Er2 ^{iv}	2.2913 (19)
C13—C14	1.415 (6)	O4—Er1 ^{vi}	2.266 (2)

С13—Н13	0.9300	O7—Er1 ^{vii}	2.199 (2)
C14—C15'	1.389 (8)	O8—Er2 ^{vii}	2.261 (2)
C14—C15	1.389 (6)	O10—Er2 ⁱⁱⁱ	2.336 (2)
C14—C13'	1.422 (8)	O12—Er1 ^v	2.273 (2)
C14—C16	1.491 (4)	O2W—H3W	0.817 (10)
C15—H15	0.9300	O2W—H4W	0.819 (10)
C12'—C13'	1.376 (9)	O3W—H5W	0.819 (10)
C12'—C11'	1.388 (9)	O3W—H6W	0.822 (10)
C12'—H12'	0.9300	O1WA—H1WA	0.825 (10)
C13'—H13'	0.9300	O1WA—H2WA	0.822 (10)
C11'—H11'	0.9300	O1WA—H1WB	0.825 (10)
C15'—H15'	0.9300	O1WA—H2WB	0.822 (10)
C16—08	1.248 (4)	OIWB—HIWA	0.813 (10)
C1607	1.265 (4)	OIWB—H2WA	0.817(10)
C17-012	1.249(4) 1.254(4)	O1WB - H2WB	0.815(10) 0.817(10)
C17-C18	1 490 (4)	01 wb—112 wb	0.017 (10)
02 $C1$ 01	110.0 (3)	C23 C22 C21	110.0(3)
02 - C1 - C1	119.9 (3)	C_{23} C_{22} C_{24}	119.9(3) 120.6(3)
01 - C1 - C2	119 3 (3)	$C_{23} = C_{22} = C_{24}$	120.0 (3)
O2-C1-Er2	61.10(16)	C22—C23—C18	120.3 (3)
01—C1—Er2	58.93 (15)	C22—C23—H23	119.9
C2—C1—Er2	174.7 (2)	C18—C23—H23	119.9
C7—C2—C3	119.4 (3)	O9—C24—O10	121.1 (3)
C7—C2—C1	119.9 (3)	O9—C24—C22	120.4 (3)
C3—C2—C1	120.7 (3)	O10—C24—C22	118.4 (3)
C4—C3—C2	120.5 (3)	O7 ⁱ —Er1—O5	87.89 (9)
С4—С3—Н3	119.7	O7 ⁱ —Er1—O4 ⁱⁱ	88.57 (9)
С2—С3—Н3	119.7	O5—Er1—O4 ⁱⁱ	148.43 (9)
C3—C4—C5	120.0 (3)	O7 ⁱ —Er1—O12 ⁱⁱⁱ	162.37 (9)
C3—C4—H4	120.0	O5—Er1—O12 ⁱⁱⁱ	83.04 (10)
C5—C4—H4	120.0	O4 ⁱⁱ —Er1—O12 ⁱⁱⁱ	107.00 (9)
C4—C5—C6	120.5 (3)	O7 ⁱ —Er1—O9	97.76 (8)
С4—С5—Н5	119.7	O5—Er1—O9	76.46 (10)
С6—С5—Н5	119.7	O4 ⁱⁱ —Er1—O9	72.98 (8)
C7—C6—C5	119.5 (3)	O12 ⁱⁱⁱ —Er1—O9	94.78 (9)
C7—C6—C8	120.9 (3)	O7 ⁱ —Er1—O3W	78.59 (10)
C5—C6—C8	119.5 (3)	O5—Er1—O3W	76.44 (10)
C6—C7—C2	120.1 (3)	O4 ⁱⁱ —Er1—O3W	133.26 (9)
С6—С7—Н7	120.0	O12 ⁱⁱⁱ —Er1—O3W	84.59 (10)
С2—С7—Н7	120.0	O9—Er1—O3W	152.77 (9)
O4—C8—O3	123.4 (3)	O7 ⁱ —Er1—O2W	98.02 (9)
O4—C8—C6	117.9 (3)	O5—Er1—O2W	142.72 (10)
O3—C8—C6	118.7 (3)	O4 ⁱⁱ —Er1—O2W	68.79 (8)
06—C9—O5	123.8 (3)	O12 ⁱⁱⁱ —Er1—O2W	80.58 (10)

06 C9 C10	118 1 (3)	OQ = Er1 = O2W	138.00(0)
05 - C9 - C10	118.1 (3)	$O_{3}W$ Er1 $O_{2}W$	68 87 (9)
C15—C10—C11	119.2 (5)	011—Er2—O6	82.59 (9)
C15'—C10—C11	117.0 (6)	011 —Er2— 08^{i}	80.53 (9)
C15—C10—C11'	116.4 (6)	$O6-Er^2-O8^i$	112.88 (8)
C15'—C10—C11'	119 5 (7)	011 Fr2 03^{iv}	85 32 (8)
$C_{15} - C_{10} - C_{9}$	120.3 (4)	$06 \text{ Er2} 02^{\text{iv}}$	93 46 (8)
$C_{15} = C_{10} = C_{10}$	120.3(4)		147.01.(9)
	120.2 (4)	08Er203-	147.91 (8)
C11—C10—C9	120.0 (4)	011—Er2—010 ^v	118.58 (8)
C11'C10C9	119.4 (5)	$O6$ — $Er2$ — $O10^{v}$	157.37 (9)
C12—C11—C10	120.0 (6)	$O8^{i}$ —Er2—O10 ^v	80.53 (8)
C12—C11—H11	120.0	$O3^{iv}$ —Er2—O10 ^v	81.27 (8)
C10—C11—H11	120.0	O11—Er2—O1	143.48 (8)
C13—C12—C11	120.2 (6)	O6—Er2—O1	80.12 (8)
C13—C12—H12	119.9	O8 ⁱ —Er2—O1	77.04 (9)
C11—C12—H12	119.9	O3 ^{iv} —Er2—O1	127.49 (7)
C12—C13—C14	120.2 (6)	O10 ^v —Er2—O1	85.68 (8)
С12—С13—Н13	119.9	O11—Er2—O2	153.31 (9)
C14—C13—H13	119.9	O6—Er2—O2	82.50 (8)
C15'—C14—C13	117.5 (6)	O8 ⁱ —Er2—O2	125.81 (9)
C15—C14—C13	119.9 (5)	O3 ^{iv} —Er2—O2	73.63 (7)
C15'—C14—C13'	119.0 (6)	O10 ^v —Er2—O2	74.89 (8)
C15—C14—C13'	115.3 (6)	O1—Er2—O2	53.87 (7)
C15'—C14—C16	120.1 (5)	O11—Er2—C1	163.29 (9)
C15—C14—C16	120.5 (4)	O6—Er2—C1	81.38 (9)
C13—C14—C16	119.0 (4)	O8 ⁱ —Er2—C1	101.46 (9)
C13'—C14—C16	119.8 (5)	O3 ^{iv} —Er2—C1	100.30 (8)
C14—C15—C10	120.1 (6)	$O10^{v}$ —Er2—C1	77.99 (8)
C14—C15—H15	119.9	O1—Er2—C1	27.23 (8)
C10—C15—H15	119.9	O2—Er2—C1	26.69 (8)
C13'—C12'—C11'	119.8 (10)	C1—O1—Er2	93.85 (17)
C13'—C12'—H12'	120.1	C1—O2—Er2	92.22 (18)
C11'—C12'—H12'	120.1	C8—O3—Er2 ^{iv}	134.08 (18)
C12'—C13'—C14	121.1 (8)	C8—O4—Er1 ^{vi}	142.64 (19)
C12'—C13'—H13'	119.5	C9—O5—Er1	169.8 (2)
C14—C13'—H13'	119.5	C9—O6—Er2	140.3 (2)
C12'-C11'-C10	119.8 (9)	C16—O7—Er1 ^{vii}	153.1 (2)
C12'—C11'—H11'	120.1	C16—O8—Er2 ^{vii}	139.5 (2)
O8—C16—O7	124.1 (3)	C24—O9—Er1	148.6 (2)
O8—C16—C14	118.5 (3)	C24—O10—Er2 ⁱⁱⁱ	110.14 (18)
O7—C16—C14	117.3 (3)	C17—O11—Er2	158.2 (2)
O11—C17—O12	123.3 (3)	C17—O12—Er1 ^v	125.5 (2)
O11—C17—C18	119.3 (3)	Er1—O2W—H3W	123 (3)
O12—C17—C18	117.4 (3)	Er1—O2W—H4W	124 (3)

C19—C18—C23	119.3 (3)	H3W—O2W—H4W	100 (4)	
C19—C18—C17	120.6 (3)	Er1—O3W—H5W	121 (3)	
C23—C18—C17	120.1 (3)	Er1—O3W—H6W	122 (4)	
C20-C19-C18	120.7 (3)	H5W—O3W—H6W	113 (5)	
С20—С19—Н19	119.6	H1WA—O1WA—H2WA	92 (5)	
С18—С19—Н19	119.6	H2WA—O1WA—H1WB	92 (5)	
C19—C20—C21	119.7 (3)	H1WA—O1WA—H2WB	92 (5)	
С19—С20—Н20	120.1	H1WB—O1WA—H2WB	92 (5)	
С21—С20—Н20	120.1	H1WA—O1WB—H2WA	93 (5)	
C20—C21—C22	120.0 (3)	H2WA—O1WB—H1WB	93 (5)	
C20-C21-H21	120.0	H1WA—O1WB—H2WB	93 (5)	
C22—C21—H21	120.0	H1WB—O1WB—H2WB	93 (5)	
			0 1 () 1/0	. 1 /0

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) *x*-1, -*y*+3/2, *z*-1/2; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) -*x*+1, -*y*+2, -*z*+1; (v) -*x*, *y*+1/2, -*z*+1/2; (vi) *x*+1, -*y*+3/2, *z*+1/2; (vii) *x*, -*y*+3/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1WB—H2WB···O12 ⁱⁱⁱ	0.817 (10)	2.54 (5)	3.019 (7)	118 (5)
O1WB—H1WB…O10 ^{viii}	0.813 (10)	2.071 (19)	2.709 (6)	135 (3)
O3W—H6W…O1WB	0.822 (10)	2.00 (3)	2.742 (7)	150 (5)
O2W—H3W…O1WB	0.817 (10)	2.13 (3)	2.837 (8)	144 (4)
O2W—H4W···O3 ^{ix}	0.819 (10)	2.002 (11)	2.820 (3)	176 (5)
O1WA—H2WA…O12 ⁱⁱⁱ	0.822 (10)	2.54 (5)	3.087 (14)	125 (5)
O1WA—H1WA…O10 ^{viii}	0.825 (10)	2.071 (19)	2.862 (14)	160 (4)
O3W—H6W…O1WA	0.822 (10)	1.93 (3)	2.702 (14)	157 (5)
O2W—H3W…O1WA	0.817 (10)	2.80 (4)	3.429 (16)	135 (4)
O3W—H5W…O1	0.819 (10)	1.881 (14)	2.692 (3)	170 (5)
		1/0 1/0		

Symmetry codes: (iii) -x, y-1/2, -z+1/2; (viii) x+1, y, z; (ix) -x+1, y-1/2, -z+1/2.

Fig. 1

Fig. 2